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Abstract

A three-fluid model of the dispersed-annular regime of two-phase flow is suggested. The model is based on the con-

servation equations of mass, momentum, and energy for the gas phase, the dispersed phase (droplets), and the film.

Additionally, this model includes the equation for the number density of particles of the dispersed phase, which is used

to determine the mean particle size. Calculations are compared with experimental data on the entrainment coefficient,

film and droplet flow rates, film thickness, pressure drop, and droplet size.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The available thermohydraulic computer codes

(RELAP, TRAC, CATHARE, ATHLET etc.) are based

on the so-called two-fluid models that include the con-

servation equations of mass, momentum, and energy

for the liquid and gas phases. However, real two-phase

and, the more so, multiphase media may consist of three

and more components, for example, gas, droplets, and

film in the dispersed-annular regime of flow. Therefore,

it appears advisable to turn to a three-fluid model, with

each component provided with its own set of conserva-

tion equations (e.g., see [1–4]).
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In the formulation of the three-fluid model, each of

the three phases is considered separately. The transition

from a two-fluid to a three-fluid model of two-phase

medium calls for the knowledge of mass flow rates be-

tween the droplets and the film, i.e., for the determina-

tion of the rates of the deposition of droplets onto the

film and their entrainment (separation) from the film.

This challenge implies a more thorough investigation

of transport processes in two-phase media compared

with the determination of the integral coefficient of

entrainment (the ratio of the mass flow rate of droplets

to the total flow rate of the liquid phase) appearing in

two-fluid models. At present, the droplet deposition

from turbulent flow in channels may be calculated within

a fairly rigorous theoretical formulation that involves

minimum empirical information about the structure of

the near-wall turbulence (at least, in the absence of re-

bound of droplets and splashing of film). However, the

process of liquid entrainment may be simulated only on
ed.
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Nomenclature

Cd droplet drag coefficient

Cl Kolmogorov–Prandtl constant

Cvm virtual mass coefficient

D hydralic diameter of the channel

Di equivalent diameter of the gas-dispersed

core

d droplet diameter

E entrainment coefficient

fu particle response coefficient

G gravity parameter

g gravity acceleration

k kinetic turbulent energy of the gaseous

phase

Lp Laplace number

_m superficial mass flow rate

_mL superficial mass flow rate of the liquid phase

N droplet number density

P pressure

RD deposition mass rate

RE entrainment mass rate

Re Reynolds number

S cross-section area of the channel

Si cross-section area of the gas-dispersed core

St Stokes number

TE Eulerian integral time scale of turbulence

TL Lagrangian integral time scale of turbulence

TLp time of interaction between particles and

energy-containing eddies

t time

U velocity

UG superficial gas velocity

u1* friction velocity

hu 02i intensity of gas velocity fluctuations

hv 02i intensity of droplet velocity fluctuations

W mass flow rate

We Weber number

z coordinate along the channel axis in the

direction of the gas motion

Greek symbols

a volume fraction

bt collision rate

Cij intensity of mass transfer from the ith to the

jth phase

c drift parameter

d mean film thickness

e dissipation rate of turbulent energy

g dynamic viscosity

m kinematic viscosity

n friction factor

P perimeter of the internal surface of the

channel

Pi interface perimeter of the gas-dispersed core

q density

r surface tension

sbr total breakup time

sc characteristic time between collisions of

droplets

sint interfacial friction stress on the film surface

sij friction stress on the interface between the

ith and jth phases

su droplet response time

U droplet volume fraction

u angle between the velocity and gravity

vectors

v reflection coefficient (dimensionless)

Subscripts

br breakup

int interface

w wall

l(2, 3) gas (droplets, film)
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the basis of a semi-empirical approach using some results

of the theory of stability for a moving film.

Of key importance in the models of two-phase media

is the description of the particle size of the dispersed

phase (droplets, bubbles, slugs) or of the interfacial area.

In the known thermohydraulic computer codes, the size

of the dispersed phase is determined from empirical rela-

tions reflecting the effect of one or, at best, two mecha-

nisms of the formation of the particle spectrum (for

example, entrainment of droplets from a liquid film,

fragmentation and coalescence of droplets or bubbles).

For a more accurate description, it appears advisable

to complement the calculation scheme with the transport

equation for the particle number density of the dispersed
phase, the introduction of which makes it possible to

determine the size and the interfacial area of droplets

or bubbles with due regard for different mechanisms of

their formation, growth, and breakup. The employment

of the transport equation for the particle number density

has, in our opinion, certain advantages over the applica-

tion of the corresponding equation of the interfacial area

[5,6]. In particular, unlike the interfacial area, the parti-

cle number density does not alter during phase transi-

tions, and the equation for the number density has a

simpler form than that for the interfacial area.

This paper deals with a three-fluid model of two-

phase annular flow, which is based on the one-dimen-

sional balance equations of mass, momentum, and
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energy for each of three ‘‘fluids’’, namely, the gas phase,

the dispersed phase (droplets), and the film. The model

includes the transport equation for the variation of

the number density of droplets due to deposition,

entrainment, coagulation, and breakup. The results of

predictions are compared with experimental data for iso-

thermal annular flows in tubes.
2. Balance equations for mass and momentum

The three-fluid model of annular flow is based on

one-dimensional balance equations for mass, momen-

tum, and energy, written separately for each of three

‘‘fluids’’, namely, the gas (vapor), the dispersed phase

(droplets), and the film. The balance equations of mass

for a channel of uniform cross-section have the form

oa1q1

ot
þ oa1q1U 1

oz
¼ �C12 þ C21 � C13 þ C31; ð1Þ

oa2q2

ot
þ oa2q2U 2

oz
¼ C12 � C21 � C23 þ C32; ð2Þ

oa3q3

ot
þ oa3q3U 3

oz
¼ C13 � C31 þ C23 � C32: ð3Þ

Here, Cij stands for the rate of mass transfer from the ith

to the jth phase. In particular, C12 and C21 designate

mass transfer between the gas and dispersed phases

due to condensation of vapor on droplets or evaporation

of droplets, C13 and C31 denote mass transfer between

the gas phase and the liquid film because of vapor con-

densation or liquid evaporation, and C23 and C32 iden-

tify the rate of mass transfer between the dispersed

phase and the film as a result of deposition and entrain-

ment of droplets, respectively,

C23 ¼
Pi

S
RD; C32 ¼

Pi

S
RE;

where the interface perimeter Pi is related to the perim-

eter of the internal surface of the channel P as

Pi = (1 � a3)
1/2P.

The balance equations for momentum are written as

follows:

oa1q1U 1

ot
þ oa1q1U

2
1

oz

¼ �a1
oP
oz

� C12U 12 þ C21U 21 � C13U 13 þ C31U 31

þ a1q1g cosu� 6a2
d

s12 �
Pi

S
s13; ð4Þ

oa2q2U 2

ot
þ oa2q2U

2
2

oz

¼ �a2
oP
oz

þ C12U 12 � C21U 21 þ C23U 23 þ C32U 32

þ a2q2g cosuþ 6a2
d

s12 �
Pi

S
s23; ð5Þ
oa3q3U 3

ot
þ oa3q3U

2
3

oz

¼ �a3
oP
oz

þ C13U 13 � C31U 31 þ C23U 23 � C32U 32

þ a3q3g cosuþPi

S
ðs13 þ s23Þ �

P
S
s3w: ð6Þ

In Eqs. (4)–(6) Uij is the velocity which has the matter of

the ith phase during its transition to the jth phase, sij
designates the friction stress on the interface between

the ith and jth phases, and s3w stands for the friction

stress between the film and the wall.

In accordance with asymptotic solutions under con-

ditions of strong blowing and suction [7], it is assumed

that, in the case of evaporation, the vapor leaves the liq-

uid with a velocity corresponding to that of the liquid

phase, while during condensation the vapor decelerates

in a narrow boundary layer to the velocity of the liquid

phase. Therefore, the condensing vapor leaves the gase-

ous phase also with a velocity characteristic of the liquid

phase. The streamwise velocity of the droplets deposit-

ing on the film surface is taken to be equal to their veloc-

ity in the flow core, that is, the deceleration of deposing

droplets in the neighborhood of the film is ignored, be-

cause it does not appear possible to consistently include

this effect in the one-dimensional formulation. The

streamwise velocity, with which the droplets separate

from the film surface and are entrained by the gas flow,

is assumed to be equal to the mean film velocity. There-

fore, the values of velocities on the interfaces in the bal-

ance equations for momentum (4)–(6) are taken as

U 21 ¼ U 12 ¼ U 23 ¼ U 2; U 31 ¼ U 13 ¼ U 32 ¼ U 3:

The processes of heat transfer and phase transitions

are not treated in this paper, therefore, no balance equa-

tions for energy are given. To close the set of equations

(1)–(6) we should determine the interfacial and wall fric-

tion, as well as the mass flow rates of droplet deposition

and entrainment.
3. Interfacial and wall friction

The interfacial friction on the gas–droplets interface

is defined by the relation

s12 ¼
q2ðU 1 � U 2Þd

6su
;

in which the dynamic response time of a droplet is given

by

su ¼
4ðq2 þ Cvmq1Þd
3q1CdjU 1 � U 2j

;

Cd ¼
24
Red

ð1þ 0:15Re0:687d Þ for Red 6 103;

0:44 for Red > 103:

(

Here, Cd is the droplet drag coefficient, Cvm is the virtual

mass coefficient taken as 0.5, and Red � |U1 � U2|d/m1 is
the Reynolds number for the droplet.
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The separate determination of the friction stress on

the film interface for the gas phase, s13, and for the drop-

lets, s23, is a fairly difficult problem from the experimen-

tal standpoint. Therefore, these quantities may be

determined only with a relatively high error, which is

probably responsible for the large difference between

the values given by different empirical dependences for

the interfacial friction coefficient.

The friction stress on the gas-film interface is defined

as

s13 ¼
n13a1q1ðU 1 � U 3Þ2

8ð1� a3Þ
: ð7Þ

Many correlations are available in the literature to eval-

uate the friction factor n13 [2,8–13]. All these correla-

tions are based, to some or other extent, on the

analogy with sand roughness, within which it is assumed

that the height of the waves that are formed on the film

surface is related to the mean film thickness d. The best-
known and most verified correlation is the one of Wallis

[8], which directly accounts for the effect of ‘‘wave

roughness’’ in terms of the film thickness d related to

the hydraulic diameter of the channel D:

n13 ¼ 0:02ð1þ 300�dÞ; �d ¼ d=D: ð8Þ

Later on, in a number of studies, correlation (8) was

modified to provide the limiting transition of it to single-

phase flows

n13 ¼ n10ð1þ 300�dÞ; ð9Þ

where n10 is the friction factor in a channel with solid

smooth walls that is a function on the Reynolds number

of the gas flow Re1 � q1U1Di/g1.
However, Eq. (9) does not describe the flows with

fully developed effects of roughness, when the friction

factor must not depend on the Reynolds number. In

order to describe the interfacial friction in the entire

range of variation of �d (that is, from the single-phase flow

with �d ¼ 0 to the flow with relatively thick films), we can

use the following correlation which combines (8) and (9):

n13 ¼ n10 þ 6�d; n10 ¼ ð1:82 lgRe1 � 1:64Þ�2
: ð10Þ

Note that the correlation for n13 given by Nigmatulin

[2] appears to be close to (10). The relations proposed by

Henstock and Hanratty [9] and Fukano and Furukawa

[12] predict too high values of n13 for relatively thick

films. As was indicated by Fore et al. [13] and Fossa

et al. [14], the simple correlation of Wallis corresponds

to experimental data better than the more complicated

relations of Henstock and Hanratty [9], Asali et al.

[10], and Ambrosini et al. [11]. Therefore, further we will

use Eq. (10) for the calculation of the interfacial friction

factor.

To evaluate the friction stress of droplets with the

film, we can invoke the correlation between the intensi-
ties of turbulent fluctuations of the velocities of the dis-

persed and carrier phases in the approximation of

homogeneous turbulence [15]

hv02i ¼ fuhu02i; f u ¼
1þ Asu=T Lp

1þ su=T Lp

;

A ¼ ð1þ CvmÞq1=q2

1þ Cvmq1=q2

; ð11Þ

where hv02i and hu02i are the intensities of velocity fluctu-

ations of the dispersed and carrier phases, fu is the coef-

ficient of response of the particles to the turbulent

velocity fluctuations of the carrier phase, and TLp is

the time of interaction between the particles and the en-

ergy-containing eddies.

Eq. (11) is used to derive the following formula for

the droplets-film friction stress:

s23 ¼
a2q2ðU 2 � U 3Þ2

a1q1ðU 1 � U 3Þ2
fus13: ð12Þ

The eddy-droplet interaction time is determined by the

following approximations [16]:

T Lp ¼ T LpðSt ¼ 0Þ þ ½T LpðSt ¼ 1Þ � T LpðSt ¼ 0Þ�F ðStÞ;
ð13Þ

T LpðSt ¼ 0Þ ¼ T L

4ð3aþ 3a2=2þ 1=2Þ
5að1þ aÞ2

;

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2 þ 2cffiffiffi

3
p

s
;

T LpðSt ¼ 1Þ ¼ T L

6ð2þ cÞ
5ð1þ cÞ2

;

F ðStÞ ¼ St
1þ St

� 5St2

4ð1þ StÞ2ð2þ StÞ
:

Here, St � su/TE is the Stokes number that quantifies the

droplet inertia and thereby measures the degree of cou-

pling between the gas and dispersed phases, TL is

Lagrangian integral time scale of turbulence, TE is Eule-

rian time macroscale of turbulence in the moving coor-

dinate system, c � |U1 � U2|/u1* is the drift parameter,

and u1� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s13=q1

p
is the friction velocity. Eq. (13) takes

into account the effect of the inertia of droplets as well as

of the so-called crossing-trajectories effect due to the

mean droplet velocity drift relative to the gas on the

eddy-droplet interaction time. As it follows from (13),

for inertialess particles (St = c = 0), TLp coincides with

the Lagrangian time scale TL. In the absence of the mean

drift (c = 0), TLp monotonically increases with increas-

ing St from the Lagrangian time scale TL for St = 0 to

the Eulerian macroscale for St = 1. As the drift param-

eter c increases, TLp decreases monotonically. The time

scales of turbulence, which are averaged over the chan-

nel cross-section, are taken as TL = 0.04Di/u1* and
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TE = 0.1Di/u1*, where Di � (1 � a3)
1/2D is the equivalent

diameter of the gas-dispersed core.

The friction stress between the film and the wall is

defined as

s3w ¼ n3wq3U
2
3

8
;

n3w ¼
1þ G

1þ 2G=3
64

Re3
for Re3 < 1600;

n30 ¼ ð1:82 lgRe3 � 1:64Þ�2
for Re3 > 1600:

8<
:

ð14Þ

In (14), Re3 � 4W3/Pg3 is the Reynolds number for the

liquid film, W3 � a3q3U3S is the mass flow rate of the

film, G � (q3 � q12)gcosud/sint is the gravity parameter,

q12 = a1q1 + a2q2 is the density of the gas–droplet flow,

and sint = s12 + s13 is the interfacial friction stress on

the film surface. The friction factor n3w allows for the

fact that, under conditions of laminar flow, the velocity

profile in the liquid film is formed under the effect of

both the interfacial friction and the gravity force. Under

conditions of turbulent flow, the effect of external forces

on n3w is fairly week, that is, the film velocity profile can

be considered as being universal, and consequently the

friction factor in (14) is determined by the same approx-

imation as in (10).

Note that this paper does not deal with the regimes

with low gas flow rates when flooding or flow reversal

may occur, because these phenomena call for special-

purpose analysis. Therefore, the film flow regimes con-

sidered are restricted to the condition of |G| < 1.

In the absence of the liquid film, expressions (7) and

(12) for the interfacial friction stresses are transformed

into the corresponding relations for the wall friction

when taking d = U3 = 0.
4. Deposition of droplets

Experimental data show that in annular flows we al-

most always have fairly inertial (large) droplets, whose

response time exceeds the eddy-droplet interaction time.

In [17], an analytical model for predicting the rate of

deposition of inertial particles from turbulent flow in a

vertical tube is proposed. This model is based on a solu-

tion of governing equations along with appropriate

boundary conditions, which stem from a kinetic equa-

tion for the probability density function of the droplet

velocity distribution in turbulent flow. In our paper, this

model is modified to calculate the deposition of droplets

from the core of the two-phase annular turbulent flow in

a vertical channel.

In the approximation of high-inertia particles, the

asymptotic solution of the equation of motion of the dis-

persed phase gives the following expression for the mass

deposition rate:
RD ¼ 8Usuhv02r i
Di

1þ 1� v
1þ v

ffiffiffi
2

p

r
þ 4

ffiffiffi
p
2

r
1þ v
1� v

 !
8suhv02r i

1=2

Di

" #�1

;

ð15Þ

where hv02r i is the droplet fluctuating velocity intensity in

the radial direction, v is the coefficient of reflection (re-

bound) of droplets from the wall or from the film surface

(in the case of complete adsorption v = 0, and in the case

of complete reflection of droplets v = 1).

In [17], a set of algebraic equations is given for the

axial, radial, and circumferential components of the

fluctuating velocity of the dispersed phase. From this

set of equations, it follows that, in the absence of inter-

particle collisions, any component of the droplet veloc-

ity fluctuations can be found independently; hence, to

calculate the deposition rate, according to (15), it is suf-

ficient to determine the radial intensity of the droplet

velocity fluctuations hv02r i. However, in the case of sig-

nificant contribution of interparticle collisions to the

turbulent energy balance of the dispersed phase, in or-

der to calculate the deposition rate we must, strictly

speaking, solve the entire set of equations for the axial,

radial, and circumferential fluctuating velocities. For

simplicity, to avoid solving the entire set of equations

for the individual components of the droplet velocity

fluctuations, we will assume the correlation between

the turbulent energy k2 and the radial intensity of the

velocity fluctuations hv02r i in the form of k2 ¼ 3hv02r i that
is characteristic in the single-phase near-wall turbu-

lence. Calculations performed testify that the assump-

tion made has no significant effect on the accuracy of

predicting the deposition rate. The interactions of the

droplets during collisions with one another as well as

with the wall are taken to be inelastic; therefore, the

respective coefficients of momentum restitution are

taken to be zero. In view of the assumptions made,

the following equation is derived from [17] for the

radial droplet fluctuating velocity:

1þ su
9sc1

� �
hv02r i þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2hv02r i

3

p

s
su
Di

¼ T Lp

T L

Cru1�Di

2su
: ð16Þ

Here, the constant Cr is taken to be equal to 5/81, and

the characteristic time between collisions of droplets in

the core of the annular flow is determined by the relation

sc ¼
2p
hv02r i

� �1=2
5d
72U

: ð17Þ

Eqs. (16) and (17) yield the following explicit formula

for hv02r i, which interpolates the asymptotic dependences

for su ! 0 and su ! 1:

hv02r i¼
T Lp

T L

Cru1�Di

2su

� �
1þ T Lp

T L

16Cru1�Disu
p

U
5dp

þ 1

Di

� �2
" #1=38<

:
9=
;

�1

:

ð18Þ
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As is seen from (18), the fluctuating velocity of drop-

lets and, consequently, the rate of their deposition

decrease with increasing the droplet fraction in the

gas-dispersed core. This effect is caused by the dissipa-

tion of turbulent droplet velocity fluctuations due to ine-

lastic collisions. However, as was demonstrated in [17],

the main factor causing the decrease in the deposition

rate with increasing droplet fraction is the rise of droplet

size due to coalescence, which results in reducing the de-

gree of droplet involvement in the turbulent motion of

the carrier gas flow. Note that the decrease in the depo-

sition coefficient with increasing the fraction of inertial

droplets is supported by many of known experimental

data [18–20]. It should be also mentioned that, accord-

ing to (15) and (18), the deposition rate of large drops,

whose response time is compared to the characteristic

time of the energy-containing eddies, is decreases with

increasing droplet inertia. This is attributed to reducing

droplet involvement in fluctuating motion of a carrier

turbulent flow as the droplet inertia increases and is also

connected with the ‘‘crossing trajectories’’ effect due to

gravity.

The interaction between depositing droplets and the

surface bounding the gas-dispersed flow (solid wall or

liquid film) is characterized by the reflection coefficient

v. In the case of droplet deposition on the walls of a

dry vertical channel which is free of the liquid film, al-

most no rebound of droplets is observed, and, hence,

the reflection coefficient may be taken to be zero. On

the contrary, in the presence of a thick film on the chan-

nel wall, rebound and splashing (secondary entrainment)

are observed, and, consequently, the reflection coeffi-

cient may become close to unity. The parameter govern-

ing the reflection coefficient of droplets during

deposition is based on the Weber number Wedi � sid/r,
which specifies the film resistance to failure. It is appar-

ent that the limiting relations to be hold are the

following:

v ! 0 for Wedi ! 0; v ! 1 for Wedi ! 1: ð19Þ

Based on the results of comparison with experimental

data, the reflection coefficient is given in the form

v ¼ 1� expð�3WediÞ; ð20Þ

which satisfies relations (19).
5. Entrainment of droplets

Under conditions of annular flow of a gas–liquid sys-

tem in channels, several mechanisms of droplet entrain-

ment from the film occur [2]. The dynamic impact of the

gas-dispersed core causes the generation of waves on the

film surface, with droplets being separated and entrained

from the crests of these waves. In the presence of drop-

lets in the flow core, entrainment in the form of second-
ary droplets (splashes) is possible due to the impact of

primary droplets deposing on the film. We will effec-

tively account for the secondary entrainment by intro-

ducing the reflection coefficient of droplets during

deposition calculations according to (20). Finally, in a

heated channel with nucleate boiling in the film, entrain-

ment can occur due to the action of vapor bubbles which

induce splashing however in our paper we do not con-

sider this mechanism of entrainment.

In order to calculate the dynamic entrainment of

droplets under the impact of moving gas-dispersed flow,

we have to determine the critical conditions of the onset

of film atomization. In experiments, these conditions are

found as a result of extrapolation to zero of the mass

entrainment rate RE, when the atomization of the film

and the separation of droplets emerge. A number of

empirical and semi-empirical correlations were sug-

gested in the literature for predicting the critical param-

eters and the rate of dynamic droplet entrainment.

Obviously, the most correct correlations must include

primarily the properties of the liquid film and the inter-

face. The Weber number Wedi and the Reynolds number

Re3 for the film may be selected as suitable criteria for

describing droplet entrainment.

Hewitt and Govan [21] proposed the following equa-

tion for the critical film Reynolds number:

Re�3 ¼ exp 5:85þ 0:425
g1
g3

ffiffiffiffiffi
q3

q1

r� �
: ð21Þ

Droplet entrainment originates when the agitating

interfacial shear force exerted by the gas flowing over

the film exceeds the force of surface tension that retains

the film. Consequently, the critical Weber number can

be considered as a criterion of inception of atomization.

In [22], it is recommended to use for Wedi the following

relation:

We�di
ðg3=g1Þðq1=q3Þ

1=2
¼ 1:9� 10�3Re0:23 for Re3 < 1200;

0:7� 10�5Re3 for Re3 > 1200:

(

ð22Þ

In Fig. 1, the shaded regions indicate the variation in

the critical Reynolds and Weber numbers, which are cal-

culated, according to Eqs. (21) and (22), with a change

in the physical properties (viscosity and density) of water

and steam on the saturation line in the pressure range

from 0.1 to 15 MPa.

Correlation (22) predicts a monotonic growth of We�di
with an increase in Re3. However, there is a number of

experimental data (for example, see [19,23,24]), which

point to the existence of the critical film Reynolds num-

ber below which almost no entrainment of droplets is

observed. In [25], an energy analysis of the stability of

the film flow to finite perturbations was performed.

The results obtained demonstrate a relatively week effect

of the angle of inclination of the channel with respect to
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the gravity vector as well as of the flow direction (up-

ward or downward) on the critical Reynolds number

and give a mean value of Re�3 ¼ 160.

Note that Ishii and Grolmes [26] recommended

Re�3 ¼ 160 as the critical film Reynolds number of the

onset of droplet entrainment for horizontal and upward

flows, whereas Nigmatulin et al. [24] gave the value of

Re�3 ¼ 180 for upward flow.

We can see from Fig. 1 that the part of the parameter

(g3/g1)(q1/q3)
1/2, which allows for the effect of the ratio of

the physical properties of the liquid and gas phases, may

be quite significant, especially in relation (22). However,

Eqs. (21) and (22) demonstrate the directly opposite ef-

fect of this parameter on the entrainment onset. There-

fore, we will ignore the effect of this parameter and use

the following simple dependence of the critical film

Weber number on the Reynolds number:

We�di ¼ ½7� 10�6 þ 4� 10�4ðRe3 � 160Þ�0:8�Re3: ð23Þ

This correlation accounts for the theoretical value of

Re�3 ¼ 160 and agrees well with formula (22) at high val-

ues of Re3. According to (23), function We�diðRe3Þ is non-
monotonic, it has a minimum and increases linearly at

high values of Re3 (see Fig. 1).

Two types of dependences for describing the droplet

entrainment rate appear to be best validated theoreti-

cally, namely, those based on the deviation of the film

Reynolds number Re3 from its critical value Re�3 or on

the deviation of the film Weber number Wedi from the

respective critical value We�di. The correlation of Hewitt

and Govan [21]

RE

a1q1U 1

¼ 5:75� 10�5 q3

q1

� �2 Re3 � Re�3ð Þ2
LpD3

" #0:316
for Re3 > Re�3;

0 for Re3 < Re�3;

8>><
>>:

ð24Þ
is a dependence of the first type. Here LpD3 � q3rD=g
2
3 is

the Laplace number, and Re�3 is determined according to

(21).

Lopez de Bertodano and Assad [27] suggested the fol-

lowing correlation based on the Kelvin–Helmholtz

instability theory:

RED
g3

¼
4:47� 10�7 WeD1

q3 � q1

q1

� �1=2

ðRe3 � Re�3Þ
" #0:925

g1
g3

� �0:26

for Re3 > Re�3;

0 for Re3 < Re�3;

8>>>><
>>>>:

ð25Þ
where WeD1 � q1U

2
1D=r is the Weber number con-

structed by the gas flow velocity. The critical Reynolds

number Re�3 in (25) is taken to be 80.

Nigmatulin et al. [22] assumed that the entrainment

of droplets emerges at the instant when the interfacial

shear stress exceeds the surface tension force. Therefore,

the Weber number of the film is a suitable criterion to

describe entrainment, and the deviation Wedi from the

critical value We�di is used as the parameter that governs

the entrainment rate. In [22], the following correlation

was proposed:

REPð1� a3Þ1=2

g3

¼ 0:55
q3

q1

� �0:5 Wedi �We�di
� �0:85

X0:7
3

Re3
for Wedi > We�di;

0 for Wedi < We�di;

8><
>:

ð26Þ

where X3 � g3(g/q3r
3)1/4 and We�di is determined in

accordance with (22).

Finally, a simple correlation of the same type as (26)

was suggested in [25]

RE ¼ 0:023ðq3siÞ
1=2 Wedi � We�di
� �

for Wedi > We�di;

0 for Wedi < We�di;

(

ð27Þ

where We�di is determined by (23). It is also based on the

Kelvin–Helmholtz instability theory and fits the experi-

mental data reported in [28].
6. Equation for the droplet number density

In annular flow, the spectrum of droplet sizes is usu-

ally very wide. Such a wide spectrum is formed as a re-

sult of different physical processes, namely, breakup,

coalescence, phase changes, film atomization, and drop-

let deposition. It depends on the initial droplet size dis-

tribution at the inlet to a channel. For the sake of

simplicity, we will simulate the droplet size spectrum in

the frame of a monodisperse approximation. With this

assumption, the equation for the droplet number
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density, N, is invoked, and the droplet size distribution is

taken into account by means of introducing certain fixed

values of the ratios of the surface, volume, and Sauter

mean diameters to the maximum diameter. These values

are taken as d20/dmax = 0.11, d30/dmax = 0.14, d32/dmax =

0.25. They follow from the upper log-normal distribu-

tion with the mean parameters recommended by Azzo-

pardi [29]. The volume mean droplet diameter is

defined as d30 = (6U/pN)1/3.

The equation for the droplet number density is given

in the form

oq2SiN
ot

þ oq2SiU 2N
oz

¼ Kbr � Kcoag þ QE � QD; ð28Þ

where Si � S(1 � a3) is the cross-section area of the gas-

dispersed core. The terms on the right-hand side of (28)

allow for, respectively, the variation in the number of

droplets due to breakup, coagulation, entrainment,

and deposition. Breakup and coagulation are treated

as the volume processes, whereas entrainment and dep-

osition are considered as the surface ones.

The breakup of droplets is described by means of the

relaxation model

Kbr ¼ q2Si
Nbr � N

sbr
HðNbr � NÞ: ð29Þ

In (29), H(x) is the Heaviside function: H(x < 0) = 0 and

H(x > 0) = 1. The number density Nbr corresponds to

the number of droplets per unit volume with the volume

mean diameter d30,br, which is determined with the

assumption that the breakup is a result of the droplet

interaction with the gas flow

Nbr ¼
6U

pd3
30;br

: ð30Þ

The quantity sbr in (29) characterizes the time of frag-

mentation of droplets. In accordance with (29), no

breakup is observed when N > Nbr (d30 < d30,br), while,

at d30 > d30,br, N exponentially tends to the equilibrium

value of the droplet number density Nbr, with the char-

acteristic time being sbr. Fragmentation of droplets in a

gas flow may be governed by two mechanisms. First, un-

der the impact of the aerodynamic drag force, the mean

velocity difference (slip) between the gaseous and dis-

persed phases causes deformation of a droplet, which

may lead to its destruction. This mechanism of breakup

is characterized by the Weber number Wead12 � q1ðU 1�
U 2Þ2d=r constructed using the difference between the

gas and droplet velocities and may be even observed un-

der conditions of laminar flow in the absence of turbu-

lent velocity fluctuations. The other mechanisms of

breakup is associated with the interaction between the

droplet and turbulent eddies and may take place in the

absence of the mean velocity slip.

According to experimental dada reported in [2,30,31],

the critical Weber number Wea
�

d12, which is the criterion of
the droplet stability to any disturbances and the onset of

its fragmentation under the impact of the aerodynamic

drag force due to the mean velocity slip, can be given

by the following correlation:

Wea
�

d12 ¼ 12 1þ 1:5Lp�0:37
d2

� �
; ð31Þ

in which Lpd2 � q2rd=g
2
2 is the Laplace number for the

droplet.

The total breakup time of a particle is the sum of the

time of deformation of the droplet interface up to a crit-

ical state and the time of its disintegration into frag-

ments [32]

sbr ¼ sdef þ sdris: ð32Þ

In the case of droplet fragmentation due to the mean

velocity slip, the deformation time can be estimated as

[2,32]

sadef ¼
d

jU 1 � U 2j
q2

q1

� �1=2

: ð33Þ

The disintegration time is assumed to be equal to the

reciprocal of the lower natural frequency of droplet

oscillations [33]

sdris ¼
pd3=2ð3q2 þ 2q1Þ

1=2

4ð3rÞ1=2
: ð34Þ

If the critical Weber number based on the mean

velocity difference between the gas and droplets is

known, we can determine the stable droplet diameter,

above which the fragmentation will occur,

da
br ¼

Wea
�

d12ðda
brÞr

q1ðU 1 � U 2Þ2
: ð35Þ

However, using criterion (35) we obtain, as a rule, much

larger droplet sizes compared with those observed exper-

imentally in the annular two-phase flow. Therefore, the

mechanism of breakup induced by the interaction of

droplets with turbulent eddies of the carrier gas seems

to be more probable. To describe the breakup of

droplets by turbulence, the well-known hypothesis of

Kolmogorov–Hinze is invoked. It is based on the

assumption that breakup is essentially controlled by tur-

bulent structures, whose sizes are close to the particle

diameter (because only such velocity fluctuations are

capable to cause large deformation of the droplet inter-

face), and occurs when the disruptive turbulent stresses

are larger than the confining stresses due to surface ten-

sion. With such a model, a permissible maximal stable

particle size is determined from the following relations:

Wetdðd t
brÞ ¼ Wet

�

d ; WetdðdÞ ¼
q1SllðdÞd

r
; ð36Þ

where Wetd is the droplet Weber number based on the

longitudinal two-point velocity structure function Sll

[34]. Then, by definition, Sll(d) determines the difference
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in velocities at two points separated by the length, which

is equal to the droplet diameter d. The critical Weber

number in (36) is as follows:

Wet
�

d ¼ 3

frð1þ 2q2=q1Þ
; f r ¼

1þ Asu=T Lr

1þ su=T Lr

: ð37Þ

Here, TLr is the time scale that specifies the fluctuating

velocity increment at two points separated by d [35].

The expression for fr in (37) coincides with fu in (11)

when replacing TLr by TLp. For low-inertial particles

(droplets or bubbles) when fr ’ 1, (37) reduces to the

relation [36]

Wet
�

d ¼ A ¼ 3

1þ 2q2=q1

; ð38Þ

which correlates well with the critical Weber number

predicted by the well-known resonance hypotheses for

the splitting of droplets and bubbles by turbulence [37].

The velocity structure function in (36) and the two-

point time scale in (37) are given by the corresponding

approximations that interpolate those in the viscous,

inertial, and external space subranges [38]:

SllðdÞ ¼
15m1
e1d

2

� �n

þ 1

2ðe1dÞ2=3

 !n

þ 3

4k1

� �n
" #�1=n

;

T Lr ¼
1

ð5m1=e1Þn=2 þ 0:3d2=3=e1=3
� �n þ 1

T Lp

� �n
" #�1=n

;

n ¼ 20: ð39Þ

In (39), k1 and e1 are the kinetic turbulent energy and the

energy dissipation rate of the carrier gas flow, respec-

tively. They are determined as follows:

k1 ¼
u21�

C1=2
l

; e1 ¼ C1=2
l

k1
T L

¼ 25
u31�
Di

;

where Cl � 0.09 is the Kolmogorov–Prandtl constant.

Then relations (36) along with (37) and (39) provide

an equation to determine the maximal stable diameter

of droplets due to their interaction with turbulent eddies

d t
br ¼

Wet
�

d ðd t
brÞr

q1Sllðd t
brÞ

: ð40Þ

The characteristic time of droplet deformation due to

interaction with turbulent eddies is estimated by means

of the Newton law under the assumption that the defor-

mation force is proportional to the difference between

the turbulent and surface tension stresses. As a result,

this time is given by

stdef ¼ b
ð1þ 2q2=q1ÞWet

�

d

ð1� Wet
�
d Þ=Wetd

� �1=2
d

S1=2
ll

; b ¼ 1:1: ð41Þ

Note that the deformation time (41) correlates with that

found by Martinez-Bazán et al. [39] for the air bubbles
injected into a turbulent water flow field. Therefore,

the constant b is determined from the requirement to

fit the experiments [39], with, according to (38),

Wet
�

d ¼ 3 for large bubbles at q2/q1 � 1.

Taking into account both mechanisms of fragmenta-

tion, the maximum stable size of droplets may be deter-

mined as the minimal value given by (35) and (40), that

is, dbr ¼ min da
br; d

t
br

� �
. The droplet breakup time is ob-

tained from (32)–(34) and (41) in accordance with the

minimal value of the droplet diameter thus obtained.

Note that in all correlations associated with droplet

breakup except for (30), namely in (31)–(41) we should

use the maximum diameter dmax.

In the monodisperse approximation, the averaged

velocities of all droplets have the same values at any

space point; therefore, the droplets may coagulate only

as a result of collisions due to turbulent velocity fluctu-

ations. Note that, in this case, the contribution of the

Brownian diffusion and several other mechanisms,

which are significant for coagulation of fine aerosol par-

ticles, is minor. In subsequent developments, droplets

are supposed to stick together when once collided, and

therefore the droplet collision rate is treated as the coag-

ulation rate, that is, the coagulation efficiency coefficient

is taken to be unity. Then, the term describing the coag-

ulation in (28) has the form

Kcoag ¼ � q2SibtN
2

2
ð42Þ

To find the collision rate bt in (42), we invoke the

assumption that the joint probability density of the

velocities of the gas and the droplet is a correlated Gaus-

sian distribution. Then we can derive the following ana-

lytical expression for the collision rate induced by

droplet–turbulence interaction [38,40]:

bt ¼ 4
2p
3

� �1=2

d2k1=21 ½fuð1� fuÞ�1=2: ð43Þ

In view of expression (11) for the coefficient of re-

sponse of droplets to turbulent velocity fluctuations of

the carrier gas with q1/q2 � 1, Eq. (43) is rewritten as

bt ¼ 4
2p
3

� �1=2 d2u1�

C1=4
l

su
T Lp

� �1=2

1þ su
T Lp

� ��1

: ð44Þ
The droplet–eddy interaction time TLp in (44) is cal-

culated in accordance with (13). As it follows from (44),

bt reaches its maximal value at su = TLp. A decrease in bt
with increasing su for large droplets is attributed to their

reduced involvement in the turbulent motion of the car-

rier gas, which is the cause for collisions. A decrease in bt
with decreasing su for small droplets is associated with

an increase in the correlation of their motion leading
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to a decrease in the collision frequency. Since the colli-

sion rate is proportional to the collision section of drop-

lets, the surface mean diameter d20 is taken to be the

characteristic droplet diameter for all quantities in (44).

An increase in the droplet number density due to liq-

uid entrainment from the film is defined by the relation

QE ¼ Pi

q2

q3

RE

#E

ffi Pi

RE

#E

:

To determine the mean volume of entrained droplets

#E � pd3
30;E=6, we will use the simple assumption of

instantaneous fragmentation of droplets penetrating

into the flow core from the film under the impact of

the aerodynamic drag force due to the difference be-

tween the gas and film velocities. Then, relations similar

to (31) and (35) yield the following expression for the

maximum diameter of droplets penetrating into the

gas-dispersed core from the film:

dmax;E ¼ We�d13ðdmax;EÞr
q1ðU 1 � U 3Þ2

;

We�d13 ¼ 12 1þ 1:5Lp�0:37
d3

� �
; Lpd3 ¼

q3rdmax;E

g23
:

A decrease in the droplet number density due to dep-

osition is represented as

QD ¼ PiRD

N
U
;

where the Sauter droplet diameter d32 is used for calcu-

lating the mass deposition rate RD.
7. Calculation results

In the dispersed-annular flow in channels, the liquid

wall layer and the gas–droplet core stream move concur-

rently. The liquid layer, which has an agitated wavy sur-

face, can be atomized and entrained by the gas, and

simultaneously the droplets can deposit on the wall.

Therefore, the net entrainment of droplets may be inter-

preted as a balance between the deposition and entrain-

ment phenomena. It is clear that, in sufficiently long

channels, an equilibrium sets in between the processes

of deposition, entrainment, coagulation, and fragmenta-

tion of droplets, and as a result a hydrogynamically

developed flow is realized, with none of the flow para-

meters varying along the channel length. The calculation

results are analyzed for the inlet section of the channel as

well as for the region of hydrogynamically stabilized

flow.

The motion of a three-fluid (gas–droplets–film) sys-

tem is calculated using the balance equations for mass

(1)–(3) momentum (4)–(6) and droplet number density

(28) with due regard for closure relations given above.

Adiabatic downward and upward vertical annular flows

are analized in a wide range of the determining para-
meters (pressure, mass flow rate, and void fraction).

With a view to investigate the influence of the prediction

accuracy of droplet entrainment on the flow characteris-

tics, calculations were performed for all four alternatives

of the correlation for the entrainment rate, as given by

Eqs. (24)–(27). Moreover, calculations were also per-

formed with the simple correlations for the deposition

rate given by Hewitt and Govan [21] and Nigmatulin

et al. [22] instead of Eq. (15) along with (18) and (20).

This was done to analyze the effect of the prediction

accuracy of droplet deposition on the flow characteris-

tics. These correlations for the deposition rate, com-

bined with any dependence for the entrainment rate of

Eqs. (24)–(27) produce significantly poorer results as

to agreement with experimental data, than those ob-

tained by means of Eq. (15) along with (18) and (20).

Therefore, all the calculation results presented below

were obtained by means of Eq. (15) along with (18)

and (20) for the deposition rate, and all four alternatives

of the calculation procedures differ from one another

only by the correlation for the entrainment rate, with

the rest of the closure relations remaining the same.

Fig. 2 shows variation in the film flow rate under con-

ditions of the upward air–water flow experimentally

investigated by Nigmatulin et al. [24]. In the experi-

ments, water was delivered to the tube wall, that is,

the initial flow rate of the dispersed phase was zero. In

accordance with the experimental data, calculations

were carried out for two initial values of the film flow

rate and three different values of the air velocity. We

can see that the film flow rate decreases monotonically

as a result of separation and entrainment of droplets,

with a lower film flow rate corresponding to a higher

gas velocity. As it follows from Fig. 2, correlation (24)

and (25), especially (24), considerably underestimate

the entrainment rate of droplets in the inlet section

of the tube, thereby resulting in much higher values of

the film flow rate compared with the measurements.

On the contrary, correlation (26) predicts too high val-

ues of the entrainment rate, thereby appreciably under-

estimating the film flow rate, except for the region

immediately adjacent to the inlet section. The best agree-

ment with the experimental data, excluding the region

immediately adjacent to the inlet section, is met when

determining the entrainment rate in accordance with

(27).

Now let us compare calculations with experimental

data as regard to the ratio between the flow rates of

the liquid phase in the form of droplets and film. In

the literature, this ratio is usually specified by the so-

called entrainment coefficient E �W2/(W2 + W3), which

is equal to the ratio between the mass flow rate of the

dispersed phase (droplets) and the total flow rate of

the liquid (droplets and film). In two-fluid models, the

entrainment coefficient has to be prescribed by certain

correlation; therefore, a number of empirical correla-
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tions for determining E have been suggested to date (for

example, see Ishii and Mishima [41]). However, such

correlations, as a rule, fail to provide an adequate

description of the distribution of the liquid outside of

the range of the experimental data used to derive these.

The three-fluid model enables to simulate the entrain-

ment coefficient without involving additional empirical

information other than that used in closing the set of

transport balance equations. The entrainment coeffi-

cients predicted were compared with the experimental

data reported in [42] for hydrodynamically developed

flows away from the channel inlet, where dynamic equi-

librium between the processes of droplet deposition and

entrainment being set. The experiments were carried out

in channels of different diameters (D = 8–30 mm) and

cover a wide range of pressure (P = 1–16 MPa) and

superficial mass flow rate ð _m ¼ 500–4000 kg=m2 sÞ.
The results of comparison of the predicted and meas-

ured values of the entrainment coefficient are presented
in Fig. 3. It is apparent that none of correlations (24)–

(27) for the entrainment rate is ideal in the entire range

of the determining parameters. Equations (24) and (25)

lead to a considerable error in the case of low mass flow

rates and void fractions, and (25) provides acceptable re-

sults only at moderate pressures. Correlations (26) and

(27) also bring about a marked deviation from the

experimental values, especially for low values of E.

Of special interest is the behavior of the mass flow

rate of the dispersed phase at low values of the gas veloc-

ity. Fig. 4 plots the predicted curves and the experiments

of Azzopardi and Zaidi [43] for the superficial droplet

mass flow rate, _m2 � W 2=S, as a function of the super-

ficial gas velocity, UG � W1/q1S. We see the nonmono-

tonous variation in _m2ðUGÞ and the increase in _m2 with

a decrease in UG at low values of the gas velocity. Such a

dependence of _m2 on UG cannot be predicted by calcula-

tions using correlations (24) and (25), which relate the

entrainment rate to the deviation of the film Reynolds

number from its critical value and, accordance with this,
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results in reducing _m2 to zero with decreasing UG. Ear-

lier this shortcoming of using (24) was point out in

[43]. On the other hand, Eqs. (26) and (27), which are

based on the correlation between the entrainment rate

and the deviation of the film Weber number from its

critical value, describe qualitatively correctly the non-

monotonous behavior of _m2 as a function of UG. There-

fore, it seems likely that the correlations based on

the deviation of the film Weber number Wedi from the

respective critical value We�di are more correct than the

ones based on the deviation of the film Reynolds num-

ber Re3 from its critical value Re�3, and theoretical mod-

els for predicting liquid entrainment need to be further

refined.

Next let us compare our calculations with the exper-

imental data [44] regarding to the film thickness and the

pressure drop. These experiments were accomplished for

both downward and upward flow in a vertical tube of

the inner diameter of 15 mm. Water and water-glycerine

solution were selected as the liquid phase, and air was

used as the gas phase. The flow in the measurement sec-

tion was hydrogynamically stabilized. Calculations per-

formed showed that the values of the film thickness as

well as those of the pressure drop obtained by means

of any correlation for the entrainment rate of (24)–(27)

are rather close to each other. Therefore, Fig. 5 presents

only the calculations results obtained by using (27),

while Figs. 6 and 7 show those by (25) and (27).

In Fig. 5, the effect of the superficial gas velocity and

the water mass flow rate on the film thickness as well as

on the pressure gradient is shown. As is seen from Fig.

5(a), the film thickness decreases with increasing the

gas velocity, and this is apparently connected with an in-

crease in the mean film velocity. We see also that the film

thickness increases monotonically as the liquid flow rate

increases. In the upward flow, interfacial stress and grav-

ity act in opposite directions; therefore, the film thick-
ness is found to be somewhat more than that in the

downward flow. Fig. 5(b) demonstrates the monotonic

growth of the pressure gradient with an increase in both

the gas velocity and the water flow rate. Like the film

thickness, the pressure gradient in the upward flow has

a slightly greater magnitude than that in the downward

flow, however, this difference disappears as the gas

velocity increases.

Figs. 6 and 7 give comparisons between the predicted

and measured values of the film thickness and the pres-

sure drop for all the cases considered in the experiments

of Markovich et al. [44]. As is seen, a reasonable agree-

ment exists between the predictions and experiments,

although the calculations systematically overestimate

the pressure gradient. Moreover, from Figs. 6 and 7,

we can conclude that correlations (25) and (27) for the

entrainment rate result in very close values of both the

film thickness and the pressure drop.
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Fig. 6. Comparison of the film thickness predicted and meas-

ured by Markovich et al. [44]. (a) Calculation by (25); (b)

calculation by (27); 1: downward flow of water; 2: upward flow

of water; 3: downward flow of water–glycerine solution; 4:

upward flow of water–glycerine solution.
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Finally, let consider comparisons between calculated

and measured values of the droplet Sauter diameter.

Comparisons have been conducted with the experimen-

tal data of Jepson et al. [45], which were performed for

air–water and helium–water flows over a fairly wide

range of the gas and liquid flow rates. Although the

experiments were carried out at one and the same pres-

sure in the system (P = 1.5 bar), the comparison of re-

sults for air and helium enables to analyze the effect of

the gas-to-liquid density ratio q1/q2 and thereby to assess

the influence of the major factors quantifying the effect

of pressure. Fig. 8 shows typical variations in the Sauter

diameter of droplets along the channel. The quantity _mL

in the caption of Fig. 8 is the superficial mass flow rate

of the liquid phase, _mL � ðW 2 þ W 3Þ=S. From Fig. 8,

we can see that, in accordance with the experimental

data, calculations may predict both a decrease in the
droplet size due to breakup and an increase in that

due to coagulation. Fig. 8 presents also the predictions

corresponding to the familiar correlations of Azzopardi

et al. [46] and Azzopardi [47] for the size of droplets in

the annular two-phase flow

d32

D
¼ 1:91

Re0:11

We0:6D1

q1

q2

� �0:6

þ 0:4
a2q2U 2

a1q1U 1

; ð45Þ

d32

k
¼ 15:4

We0:58k1

q1

q2

� �0:58

þ 3:5
a2q2U 2

a1q1U 1

k ¼ r
q2g

� �1=2

; Wek1 ¼
q1U

2
1k

r
: ð46Þ

The first terms on the right-hand sides of (45) and (46)

describe the equilibrium droplet size due to breakup,

whereas the second terms take into consideration an in-

crease in the droplet size as a result of coagulation and

are proportional to the ratio of the flow rates of the dis-

persed and gas phases. Note that the second terms in

(45) and (46) may be used to allow for the coagulation

of droplets only in the case of relatively low values of
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d32,µm

z, m 0 0.2 0.4 0.6 0.8

30

60

90

120 4
3

1

2

d
32

,µm

z, m 0 0.2 0.4 0.6 0.8

20

40

60

80
4

3

2

1

(a)

(b)

Fig. 8. Variation of the Sauter diameter of droplets in the air

flow along the channel. (a) UG = 22.22 m/s, _mL ¼ 120 kg/m2 s;

(b) UG = 44.44 m/s, _mL ¼ 120 kg/m2 s; 1: calculation; 2:

correlation [45] of Azzopardi et al. [46]; 3: correlation [46] of

Azzopardi [47]; 4: experiment by Jepson et al. [45].
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the flow rate ratio. In the case of high values of a2q2U2/

a1q1U1, these terms bring about too large droplet sizes.

As follows from Fig. 8, correlation (45) underestimates,
and correlation (46) overestimates the measured droplet

sizes.

Fig. 9 is a comparison of the predicted Sauter diam-

eters of droplets with the experimental data given in

[45,48–50]. We can see that the mean droplet size calcu-

lated using the equation for the droplet number density

is in a quite good agreement with the experiments under

consideration.
8. Summary

A three-fluid model of the two-phase annular flow is

presented. This model is based on the conservation equa-

tions of mass, momentum, and energy for the gas and

dispersed phases, and the film as well as additionally in-

cludes the equation for the number density of particles of

the dispersed phase. The latter equation is used to deter-

mine the mean particle size and may take into account

different mechanisms of the particle size variation due

to breakup, coagulation, deposition, liquid entrainment

from the film, and phase changes. Calculations are per-

formed for the inlet section as well as for the region of

hydrodynamically-stabilized flow in channels.

On the basis of thorough comparisons with exper-

imental data, it can be concluded that the three-fluid

model developed gives a reasonable description of the

processes of deposition, coagulation, and fragmenta-

tion and can be successfully applied to predict the

entrainment problem in the gas–liquid turbulent annu-

lar flows.

As the next step in the development of the three-fluid

model, we will employ it to predict critical heat flux and

describe heat transfer in the post-dryout region.
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